Statistics 1

Revision Notes

Contents

1 Statistical modelling 6
Statistical modelling 6
Definition. 6
Advantages 6
Disadvantages 6
2 Representation of sample data 7
Variables 7
Qualitative variables 7
Quantitative variables 7
Continuous variables 7
Discrete variables 7
Frequency distributions 7
Frequency tables 7
Cumulative frequency 7
Stem and leaf \& back-to-back stem and leaf diagrams 8
Comparing two distributions from a back to back stem and leaf diagram. 8
Grouped frequency distributions 8
Class boundaries and widths8
Cumulative frequency curves for grouped data 9
Histograms 9
3 Mode, mean (and median) 11
Mode 11
Mean 11
Coding 12
Coding and calculating the mean 12
Median 13
When to use mode, median and mean 13
Mode 13
Median 13
Mean 13
4 Median $\left(Q_{2}\right)$, quartiles $\left(Q_{1}, Q_{3}\right)$ and percentiles 14
Discrete lists and discrete frequency tables 14
Interquartile range 14
Discrete lists 14
Discrete frequency tables 14
Grouped frequency tables, continuous and discrete data. 15
Grouped frequency tables, continuous data 15
Grouped frequency tables, discrete data 16
Percentiles 17
Box Plots. 17
Outliers 17
Skewness. 18
Positive skew 18
Negative skew 19
5 Measures of spread 20
Range \& interquartile range 20
Range 20
Interquartile range 20
Variance and standard deviation 20
Proof of the alternative formula for variance 20
Rough checks, $m \pm s, m \pm 2 s$ 21
Coding and variance 21
6 Probability 23
Relative frequency 23
Sample spaces, events and equally likely outcomes 23
Probability rules and Venn diagrams 23
Diagrams for two dice etc 24
Tree diagrams 25
Independent events 26
To prove that A and B are independent 26
Exclusive events 27
Number of arrangements 27
7 Correlation 28
Scatter diagrams 28
Positive, negative, no correlation \& line of best fit 28
Product moment correlation coefficient, PMCC 28
Formulae 28
Coding and the PMCC 29
Interpretation of the PMCC 30
8 Regression 31
Explanatory and response variables 31
Regression line 31
Least squares regression line 31
Interpretation 32
9 Discrete Random Variables 33
Random Variables 33
Continuous and discrete random variables 33
Continuous random variables 33
Discrete random variables 33
Probability distributions 33
Cumulative probability distribution 34
Expectation or expected values 34
Expected mean or expected value of X. 34
Expected value of a function. 34
Expected variance 34
Expectation algebra 35
The discrete uniform distribution 36
Conditions for a discrete uniform distribution 36
Expected mean and variance 36
Non-standard uniform distribution 37
10 The Normal Distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$ 38
The standard normal distribution $\mathrm{N}\left(0,1^{2}\right)$ 38
The general normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$ 39
Use of tables 39
11 Context questions and answers 42
Accuracy 42
Statistical models 42
Histograms 43
Averages 43
Skewness. 44
Correlation 45
Regression 46
Discrete uniform distribution 47
Normal distribution 47
12 Appendix 49
$-1 \leq$ P.M.C.C. ≤ 1 49
Cauchy-Schwartz inequality 49
P.M.C.C. between -1 and +1 49
Regression line and coding 50
Proof 50
Normal Distribution, $Z=\frac{X-\mu}{\sigma}$ 51

1 Statistical modelling

Statistical modelling

Example: When a die is rolled, we say that the probability of each number is $\frac{1}{6}$. This is a statistical model, but the assumption that each face is equally likely might not be true. Suppose the die is weighted to increase the chance of a six. We might then find, after experimenting, that the probability of a six is $\frac{1}{4}$ and the probability of a one is $\frac{1}{12}$, with the probability of other faces remaining at $\frac{1}{6}$. In this case we have refined, or improved, the model to give a truer picture.

Example: The heights of a large group of adults are measured. The mean is 172.3 cm and the standard deviation is 12.4 cm .

It is thought that the general shape of the histogram can be modelled by the curve
$f(x)=\frac{1}{12 \cdot 4 \sqrt{2 \pi}} e^{-\frac{1}{2}(x-172 \cdot 3)^{2}}$

This might not give a true picture, in which case we would have to change the equation, or refine the model.

Definition

A statistical model is a simplification of a real world situation. It can be used to make predictions about a real world problem. By analysing and refining the model an improved understanding may be obtained.

Advantages

- the model is quick and easy to produce
- the model helps our understanding of the real world problem
- the model helps us to make predictions
- the model helps us to control a situation - e.g. railway timetables, air traffic control etc.

Disadvantages

- the model simplifies the situation and only describes a part of the real world problem.
- the model may only work in certain situations, or for a particular range of values.

2 Representation of sample data

Variables

Qualitative variables

Non-numerical - e.g. red, blue or long, short etc.

Quantitative variables

Numerical - e.g. length, age, time, number of coins in pocket, etc

Continuous variables

Can take any value within a given range - e.g. height, time, age etc.

Discrete variables

Can only take certain values - e.g. shoe size, cost in $£$ and p, number of coins.

Frequency distributions

Frequency tables

A list of discrete values and their frequencies.
Example: The number of $M \& M s$ is counted in several bags, and recorded in the frequency table below:

number of M\&M s	37	38	39	40	41	42	43
frequency	3	8	11	19	13	7	2

Cumulative frequency

Add up the frequencies as you go down the list

number of M\&M s	37	38	39	40	41	42	43
frequency	3	8	11	19	13	7	2
cumulative frequency	3	11	22	41	54	61	63

Stem and leaf \& back-to-back stem and leaf diagrams

Line up the digits on the leaves so that it looks like a bar chart.
Add a key; e.g. $5 \mid 2$ means 52 , or $4 \mid 3$ means 4.3 etc.

Comparing two distributions from a back to back stem and leaf diagram.

1. The values in \mathbf{A} are on average smaller than those in \mathbf{B}
2. The values in \mathbf{A} are more spread out than those in \mathbf{B}.

Grouped frequency distributions

Class boundaries and widths

When deciding class boundaries you must not leave a gap between one class and another, whether dealing with continuous or discrete distributions.

For discrete distributions avoid leaving gaps between classes by using class boundaries as shown below:
$X 0,1,2,3,4,5,6,7, \ldots$
\(\left.$$
\begin{array}{ccc}\begin{array}{c}\text { Class } \\
\text { interval - as given }\end{array} & \begin{array}{c}\text { Class } \\
\text { contains }\end{array} & \begin{array}{c}\text { Class boundaries } \\
\text { without gaps }\end{array}
$$

0-4 \& 0,1,2,3,4 \& \mathbf{0}-\mathbf{4} \frac{\mathbf{1}}{\mathbf{2}}\end{array}\right]\)| $\mathbf{4} \frac{\mathbf{1}}{\mathbf{2}}-\mathbf{9} \frac{\mathbf{1}}{\mathbf{2}}$ | |
| :---: | :---: |
| $5-9$ | $5,6,7,8,9$ |
| $10-12$ | $10,11,12$ |
| etc | $\mathbf{9} \frac{\mathbf{1}}{\mathbf{2}} \mathbf{- 1 2} \frac{\mathbf{1}}{\mathbf{2}}$ |

For continuous distributions the class boundaries can be anywhere.

Cumulative frequency curves for grouped data

class interval	class boundaries	frequency	class	cumulative frequency
0-4	0 to $41 / 2$	27	$\leq 4^{1 / 2}$	27
5-9	$4^{1 / 2}$ to $9^{1 / 2}$	36	$\leq 91 / 2$	63
10-19	$91 / 2$ to $191 / 2$	54	$\leq 191 / 2$	117
20-29	$19^{1 / 2}$ to $29^{1 / 2}$	49	$\leq 291 / 2$	166
30-59	$291 / 2$ to $591 / 2$	24	$\leq 591 / 2$	190
60-99	$5911 / 2$ to $991 / 2$	10	$\leq 991 / 2$	200

Plot points at ends of intervals, ($\left.4 \frac{1}{2}, \mathbf{2 7}\right),\left(9 \frac{1}{2}, \mathbf{6 3}\right),\left(19 \frac{1}{2}, \mathbf{1 1 7}\right)$ etc. and join points with a smooth curve.

Histograms

Plot the axes with a continuous scale as normal graphs.
There are no gaps between the bars of a histogram.
Area equals frequency.
Note that the total area under a frequency histogram is N, the total number and the area from a to b is the number of items between a and b.

To draw a histogram, first draw up a table showing the class intervals, class boundaries, class widths, frequencies and then heights $=\frac{\text { frequency }}{\text { width }}-$ as shown below:

class interval	class boundaries	class width	frequency	height
$0-4$	$\mathbf{0}$ to $\mathbf{4} \frac{\mathbf{1}}{\mathbf{2}}$	$4 \frac{\mathbf{1}}{2}$	27	$\mathbf{6}$
$5-9$	$\mathbf{4} \frac{\mathbf{1}}{\mathbf{2}}$ to $\mathbf{9} \frac{\mathbf{1}}{\mathbf{2}}$	5	36	$\mathbf{7 . 2}$
$10-19$	$\mathbf{9} \frac{\mathbf{1}}{\mathbf{2}}$ to $\mathbf{1 9} \frac{\mathbf{1}}{\mathbf{2}}$	10	54	$\mathbf{5 . 4}$
$20-29$	$\mathbf{1 9} \frac{\mathbf{1}}{\mathbf{2}}$ to $\mathbf{2 9} \frac{\mathbf{1}}{\mathbf{2}}$	10	49	$\mathbf{4 . 9}$
$30-59$	$\mathbf{2 9} \frac{\mathbf{1}}{\mathbf{2}}$ to $\mathbf{5 9} \frac{\mathbf{1}}{\mathbf{2}}$	30	24	$\mathbf{0 . 8}$

$$
60-99 \quad 59 \frac{1}{2} \text { to } \mathbf{9 9} \frac{\mathbf{1}}{\mathbf{2}} \quad 40 \quad 10 \quad \mathbf{0 . 2 5}
$$

Example: A grouped frequency table for the weights of adults has the following entries:

weight kg	\ldots	\ldots	$50-60$	\ldots	$70-85$	\ldots
frequency	\ldots	\ldots	60	\ldots	20	\ldots

In a histogram, the bar for the class $50-60 \mathrm{~kg}$ is 2 cm wide and 9 cm high.
Find the width and height of the bar for the $70-85 \mathrm{~kg}$ class.

Solution: $50-60$ is usually taken to mean $50 \leq$ weight <60

The width of the $50-60$ class is $10 \mathrm{~kg} \equiv 2 \mathrm{~cm}$
$\Rightarrow \quad$ width of the $70-85$ class is $15 \mathrm{~kg} \equiv \frac{15}{10} \times 2=3 \mathrm{~cm}$
The area of the $50-60$ bar is $2 \times 9=18 \mathrm{~cm}^{2} \equiv$ frequency 60
$\Rightarrow \quad$ the frequency of the $70-85$ bar is $20 \equiv$ an area of $\frac{20}{60} \times 18=6 \mathrm{~cm}^{2}$
$\Rightarrow \quad$ the height of the $70-85$ bar is area \div width $=6 \div 3=2 \mathrm{~cm}$.

Answer width of $70-85 \mathrm{~kg}$ bar is 3 cm , and height is 2 cm .

3 Mode, mean (and median)

Mode

The mode is the value, or class interval, which occurs most often.

Mean

The mean of the values $x_{1}, x_{2}, \ldots, x_{n}$ with frequencies $f_{1}, f_{2}, \ldots, f_{n}$ the mean is

$$
m=\bar{x}=\frac{1}{N} \sum_{i=1}^{n} x_{i} f_{i}, \quad \text { where } N=\sum_{i=1}^{n} f_{i}
$$

Example: Find the mean for the following table showing the number of children per family.
Solution: Number of children Frequency

x	f	$x f$
0	5	0
1	8	8
2	12	24
3	18	54
4	9	36
5	4	20
	56	142

$$
\begin{aligned}
& \sum x_{i} f_{i}=142, \text { and } N=\Sigma f_{i}=56 \\
& \Rightarrow \bar{x}=\frac{142}{56}=2 \cdot 54 \text { to } 3 \text { S.F. }
\end{aligned}
$$

In a grouped frequency table you must use the mid-interval value.

Example: The table shows the numbers of children in prep school classes in a town.

Solution:	Numberof children	Mid-interval value	Frequency	
		x	f	$x f$
	1-10	$5 \cdot 5$	5	$27 \cdot 5$
	11-15	13	8	104
	16-20	18	12	216
	21-30	25.5	18	459
	31-40	35.5	11	390.5
			54	1197

$$
\begin{aligned}
& \sum x_{i} f_{i}=1197, \text { and } N=\Sigma f_{i}=54 \\
& \Rightarrow \bar{x}=\frac{1197}{54}=22 \cdot 2 \text { to } 3 \text { S.F. }
\end{aligned}
$$

Coding

The weights of a group of people are given as $x_{1}, x_{2}, \ldots x_{n}$ in kilograms. These weights are now changed to grammes and given as $t_{1}, t_{2}, \ldots t_{n}$.

In this case $t_{i}=1000 \times x_{i}-$ this is an example of coding.
Another example of coding could be $t_{i}=\frac{x_{i}-20}{5}$.

Coding and calculating the mean

With the coding, $t_{i}=\frac{x_{i}-20}{5}$, we are subtracting 20 from each x-value and then dividing the result by 5 .
We first find the mean for t_{i}, and then we reverse the process to find the mean for x_{i} \Rightarrow we find the mean for t_{i}, multiply by 5 and add 20 , giving $\bar{x}=5 \bar{t}+20$

Proof: $\quad t_{i}=\frac{x_{i}-20}{5} \quad \Rightarrow \quad x_{i}=5 t_{i}+20$

$$
\begin{aligned}
& \bar{x}=\frac{1}{N} \sum_{i=1}^{n} x_{i} f_{i}=\frac{1}{N} \sum_{i=1}^{n}\left(5 t_{i}+20\right) f_{i} \\
& \Rightarrow \quad \bar{x}=\frac{5}{N} \sum_{i=1}^{n} t_{i} f_{i}+\frac{20}{N} \sum_{i=1}^{n} f_{i}
\end{aligned}
$$

$$
\Rightarrow \quad \bar{x}=5 \bar{t}+20
$$

$$
\text { since } \bar{t}=\frac{1}{N} \sum_{i=1}^{n} t_{i} f_{i} \text { and } N=\sum_{i=1}^{n} f_{i}
$$

Example: Use the coding $\quad t_{i}=\frac{x_{i}-165}{10}$ to find the mean weight for the following distribution.

Here the coding simplified the arithmetic for those who like to work without a calculator!

Median

The median is the middle number in an ordered list. Finding the median is explained in the next section.

When to use mode, median and mean

Mode

You should use the mode if the data is qualitative (colour etc.) or if quantitative (numbers) with a clearly defined mode (or bi-modal). It is not much use if the distribution is fairly even.

Median

You should use this for quantitative data (numbers), particularly when there are extreme values (outliers).

Mean

This is for quantitative data (numbers), and uses all pieces of data. It gives a true measure, but is affected by extreme values (outliers).

$$
\begin{aligned}
& \begin{array}{rcccr}
\text { Weight, kg } & \text { Mid-interval } & \begin{array}{c}
\text { Coded value } \\
t_{i}=\frac{x_{i}-165}{10}
\end{array} & f_{i} & t_{i} f_{i} \\
& x_{i} & -2 & 9 & -18 \\
140-150 & 145 & -1 & 21 & -21 \\
150-160 & 155 & 0 & 37 & 0 \\
160-170 & 165 & 1 & 28 & 28 \\
170-180 & 175 & 2 & \frac{11}{106} & \frac{22}{11}
\end{array} \\
& \Rightarrow \quad \bar{t}=\frac{11}{106} \\
& \text { and } \quad t_{i}=\frac{x_{i}-165}{10} \Rightarrow \quad \bar{x}=10 \bar{t}+165=10 \times \frac{11}{106}+165=166.0377358 \\
& \Rightarrow \quad \text { mean weight is } 166.04 \mathrm{~kg} \text { to } 2 \text { D.P. }
\end{aligned}
$$

4 Median $\left(Q_{2}\right)$, quartiles $\left(Q_{1}, Q_{3}\right)$ and percentiles

Discrete lists and discrete frequency tables

To find medians and quartiles

1. Find $k=\frac{n}{2}$ (for Q_{2}), $\frac{n}{4}$ (for Q_{1}), $\frac{3 n}{4}$ (for Q_{3}).
2. If k is an integer, use the mean of the $k^{\text {th }}$ and $(k+1)^{\text {th }}$ numbers in the list.
3. If k is not an integer, use the next integer up, and find the number with that position in the list.

Interquartile range

The interquartile range, I.Q.R., is $Q_{3}-Q_{1}$.

Discrete lists

A discrete list of 10 numbers is shown below:

$$
\begin{aligned}
& \begin{array}{lllllllllll}
x & 11 & 13 & 17 & 25 & 33 & 34 & 42 & 49 & 51 & 52
\end{array} \\
& n=10 \quad \text { for } Q_{1}, \frac{n}{4}=2 \frac{1}{2} \text { so use } 3^{\text {rd }} \text { number, } \quad \Rightarrow \quad \boldsymbol{Q}_{\mathbf{1}}=\mathbf{1 7} \\
& \text { for } Q_{2}, \frac{n}{2}=5 \text { so use mean of } 5^{\text {th }} \text { and } 6^{\text {th }}, \Rightarrow \boldsymbol{Q}_{2}=\mathbf{3 3} \frac{\mathbf{1}}{2} \quad \text { median } \\
& \text { for } Q_{3}, \frac{3 n}{4}=7 \frac{1}{2} \text { so use } 8^{\text {th }} \text { number, } \quad \Rightarrow \quad Q_{3}=49
\end{aligned}
$$

The interquartile range, I.Q.R., is $Q_{3}-Q_{1}=49-17=32$.

Discrete frequency tables

x	5	6	7	8	9	10	11	12
f	3	6	8	10	9	8	6	4
cum freq	3	9	17	27	36	44	50	54

$n=54 \quad$ for $Q_{1}, \frac{n}{4}=13 \frac{1}{2}$ so use $14^{\text {th }}$ number, $\quad \Rightarrow \quad Q_{1}=7$ for $Q_{2}, \frac{n}{2}=27$ so use mean of $27^{\text {th }}$ and $28^{\text {th }}, \Rightarrow \boldsymbol{Q}_{\mathbf{2}}=\mathbf{8} \frac{\mathbf{1}}{2} \quad$ median for $Q_{3}, \frac{3 n}{4}=40 \frac{1}{2}$ so use $41^{\text {st }}$ number, $\quad \Rightarrow \quad \mathbf{Q}_{\mathbf{3}}=\mathbf{1 0}$

The interquartile range, I.Q.R., is $Q_{3}-Q_{1}=10-7=3$.

Grouped frequency tables, continuous and discrete data

To find medians and quartiles

1. Find $k=\frac{n}{2}$ (for Q_{2}), $\frac{n}{4}$ (for Q_{1}), $\frac{3 n}{4}$ (for Q_{3}).
2. Do not round k up or change it in any way.
3. Use linear interpolation to find median and quartiles - note that you must use the correct intervals for discrete data (start at the $\frac{1}{2} \mathrm{~s}$).

Grouped frequency tables, continuous data

class boundaries	frequency	cumulative frequency
$0 \leq x<5$	27	27
5 to 10	36	63
10 to 20	54	117
20 to 30	49	166
30 to 60	24	190
60 to 100	12	202

With continuous data, the end of one interval is the same as the start of the next - no gaps.

To find $Q_{1}, n=202 \quad \Rightarrow \quad \frac{n}{4}=50 \frac{1}{2} \quad$ do not change it

From the diagram $\frac{Q_{1}-5}{5}=\frac{23.5}{36} \Rightarrow Q_{1}=5+5 \times \frac{23.5}{36}=8.263888889=8.26$ to 3 s.F.

To find $Q_{2}, n=202 \quad \Rightarrow \quad \frac{n}{2}=101 \quad$ do not change it

From the diagram $\frac{Q_{2}-10}{20-10}=\frac{101-63}{117-63} \Rightarrow \quad Q_{2}=10+10 \times \frac{38}{54}=17 \cdot 037 \ldots=17.0$ to 3 s.F.
Similarly for $\boldsymbol{Q}_{3}, \frac{3 n}{4}=151 \cdot 5$, so Q_{3} lies in the interval $(20,30)$

$$
\Rightarrow \quad \frac{Q_{3}-20}{30-20}=\frac{151.5-117}{166-117} \Rightarrow \quad Q_{3}=20+10 \times \frac{34.5}{49}=27 \cdot 0408 \ldots=27 \cdot 0 \text { to } 3 \text { s.F. }
$$

Grouped frequency tables, discrete data

The discrete data in grouped frequency tables is treated as continuous.

1. Change the class boundaries to the $4 \frac{1}{2}, 9 \frac{1}{2}$ etc.
2. Proceed as for grouped frequency tables for continuous data.

class interval $0-4$	class boundaries 0 to $41 / 2$	frequency	cumulative frequency
$5-9$	$4 \frac{1}{2}$ to $91 / 2$	32	25
$10-19$	$91 / 2$ to $191 / 2$	51	57
$20-29$	$191 / 2$ to $291 / 2$	47	155
$30-59$	$291 / 2$ to $591 / 2$	20	175
$60-99$	$591 / 2$ to $991 / 2$	8	183

To find $Q_{1}, \quad n=183 \quad \Rightarrow \frac{n}{4}=45.75$

From the diagram $\frac{Q_{1}-4 \cdot 5}{9 \cdot 5-4 \cdot 5}=\frac{45 \cdot 75-25}{57-25}$

$$
\Rightarrow \quad Q_{1}=4.5+5 \times \frac{20.75}{32}=7.7421875 \ldots=7.74 \text { to } 3 \text { s.F. }
$$

Q_{2} and Q_{3} can be found in a similar way.

Percentiles

Percentiles are calculated in exactly the same way as quartiles.
Example: For the $90^{\text {th }}$ percentile, find $\frac{90 n}{100}$ and proceed as above.

Box Plots

In a group of people the youngest is 21 and the oldest is 52 . The quartiles are 32 and 45 , and the median age is 41 .

We can illustrate this information with a box plot as below - remember to include a scale.

Outliers

An outlier is an extreme value. You are not required to remember how to find an outlier - you will always be given a rule.

Example: The ages of 11 children are given below.

age	3	6	12	12	13	14	14	15	17	21	26

$Q_{1}=12, Q_{2}=14$ and $Q_{3}=17$.
Outliers are values outside the range $Q_{1}-1.5 \times\left(Q_{3}-Q_{1}\right)$ to $Q_{3}+1.5 \times\left(Q_{3}-Q_{1}\right)$.
Find any outliers, and draw a box plot.

Solution: Lower boundary for outliers is $12-1.5 \times(17-12)=4.5$
Upper boundary for outliers is $17+1.5 \times(17-12)=24.5$
$\Rightarrow \quad 3$ and 26 are the only outliers.
To draw a box plot, put crosses at 3 and 26, and draw the lines to 6 (the lowest value which is not an outlier), and to 21 (the highest value which is not an outlier).

Note that there are other ways of drawing box plots with outliers, but this is the safest and will never be wrong - so why not use it.

Skewness

A distribution which is symmetrical is not skewed

Positive skew

If a symmetrical box plot is stretched in the direction of the positive x-axis, then the resulting distribution has positive skew.

For positive skew the diagram shows that $Q_{3}-Q_{2}>Q_{2}-Q_{1}$

The same ideas apply for a continuous distribution, and a little bit of thought should show that for positive skew mean $>$ median $>$ mode.

Negative skew

If a symmetrical box plot is stretched in the direction of the negative x-axis, then the resulting distribution has negative skew.

$$
\begin{array}{lll}
Q_{1} & Q_{2} & Q_{3}
\end{array}
$$

PULL

$Q_{1} \quad Q_{2} \quad Q_{3}$

For negative skew the diagram shows that $Q_{3}-Q_{2}<Q_{2}-Q_{1}$

The same ideas apply for a continuous distribution, and a little bit of thought should show that for negative skew mean $<$ median $<$ mode.

PULL

5 Measures of spread

Range \& interquartile range

Range

The range is found by subtracting the smallest value from the largest value.

Interquartile range

The interquartile range is found by subtracting the lower quartile from the upper quartile, so I.Q.R. $=Q_{3}-Q_{1}$.

Variance and standard deviation

Variance is the square of the standard deviation.

$$
\begin{aligned}
& s_{x}^{2}=\frac{1}{N} \sum\left(x_{i}-\bar{x}\right)^{2} f_{i}, \quad \text { or } \\
& s_{x}^{2}=\frac{1}{N} \sum x_{i}^{2} f_{i}-\bar{x}^{2}
\end{aligned}
$$

When finding the variance, it is nearly always easier to use the second formula.
Variance and standard deviation measure the spread of the distribution.

Proof of the alternative formula for variance

$$
\begin{aligned}
& s_{x}^{2}=\frac{1}{N} \sum\left(x_{i}-\bar{x}\right)^{2} f_{i}=\frac{1}{N} \sum\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}^{2}\right) f_{i} \\
& =\frac{1}{N} \sum x_{i}^{2} f_{i}-\frac{1}{N} \sum 2 x_{i} \bar{x} f_{i}+\frac{1}{N} \sum \bar{x}^{2} f_{i} \\
& =\frac{1}{N} \sum x_{i}^{2} f_{i}-\frac{2 \bar{x}}{N} \sum x_{i} f_{i}+\frac{\bar{x}^{2}}{N} \sum f_{i}
\end{aligned}
$$

since $\bar{x}=\frac{1}{N} \sum x f$ and $N=\sum f$

$$
=\frac{1}{N} \sum x_{i}^{2} f_{i}-2 \bar{x}^{2}+\bar{x}^{2}=\frac{1}{N} \sum x_{i}^{2} f_{i}-\bar{x}^{2}
$$

Rough checks, $m \pm s, m \pm 2 s$

When calculating a standard deviation, you should check that there is approximately 65-70\% of the population within 1 s.d. of the mean and approximately 95% within 2 s.d. of the mean.
These approximations are best for a fairly symmetrical distribution.

Coding and variance

Using the coding $t_{i}=\frac{x_{i}-k}{a}$ we see that

$$
\begin{aligned}
& x_{i}=a t_{i}+k \quad \Rightarrow \quad \bar{x}=a \bar{t}+k \\
& \Rightarrow s_{x}^{2}=\frac{1}{N} \sum\left(x_{i}-\bar{x}\right)^{2} f_{i} \quad=\frac{1}{N} \sum\left(\left(a t_{i}+k\right)-(a \bar{t}+k)\right)^{2} f_{i} \\
&=\frac{1}{N} \sum\left(a t_{i}-a \bar{t}\right)^{2} f_{i}=\frac{a^{2}}{N} \sum\left(t_{i}-\bar{t}\right)^{2} f_{i} \\
& \Rightarrow s_{x}^{2}=a^{2} s_{t}^{2} \quad \Rightarrow \quad s_{x}=a s_{t}
\end{aligned}
$$

Notice that subtracting k has no effect, since this is equivalent to translating the graph, and therefore does not change the spread, and if all the x-values are divided by a, then we need to multiply s_{t} by a to find s_{x}.

Example: Find the mean and standard deviation for the following distribution.
Here the x-values are nasty, but if we change them to form $t_{i}=\frac{x_{i}-210}{5}$ then the arithmetic in the last two columns becomes much easier.

x	$t_{i}=\frac{x_{i}-210}{5}$		f	$t_{i} f_{i}$
200	-2		$t_{i}{ }^{2} f_{i}$	
205	-1		-24	48
210	0		-23	23
215	1	30	0	0
220	2	10	30	30
		117	30	141

the mean of t is $\bar{t}=\frac{1}{N} \sum t_{i} f_{i}=\frac{3}{117}=\frac{1}{39}$
and the variance of t is $s_{t}{ }^{2}=\frac{1}{N} \sum t_{i}{ }^{2} f_{i}-\bar{t}^{2}=\frac{141}{117}-\left(\frac{1}{39}\right)^{2}=1.204470743$ $s_{t}=\sqrt{1 \cdot 204470743}=1 \cdot 097483824=1.10$ to 3 s.F.

To find \bar{x}, using $t_{i}=\frac{x_{i}-210}{5}, \Rightarrow \bar{x}=5 \bar{t}+210=215.5$ to 1 D.P.
To find the standard deviation of x
$s_{x}=5 s_{t}=5 \times 1.0974838 \ldots=5.49$ to 3 S.F.
We would need to multiply the variance by $5^{2}=25$
$\Rightarrow \quad s_{x}{ }^{2}=25 s_{t}{ }^{2}=25 \times 1.204470743=30 \cdot 1$ to 3 S.F.

6 Probability

Relative frequency

After tossing a drawing pin a large number of times
the relative frequency of it landing point up is $\frac{\text { number of times with point up }}{\text { total number of tosses }}$;
this can be thought of as the experimental probability.

Sample spaces, events and equally likely outcomes

A sample space is the set of all possible outcomes, all equally likely.
An event is a set of possible outcomes.
$\mathrm{P}(A)=\frac{\text { numberof ways } A \text { canhappen }}{\text { totalnumberin samplespace }}=\frac{n(A)}{N}$, where N is number in sample space.

Probability rules and Venn diagrams

All outcomes must be equally likely to happen.
$P(A)=\frac{n(A)}{N}$
$P\left(A^{\prime}\right)=P(\operatorname{not} A)=1-P(A)$
A^{\prime} is the complement of $A . \quad A \cup B$ means A or B or both.
$A \cap B$ means both A and B,

$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \mid B)$ means the probability that A has occurred given that we know that B has already occurred, and should always be re-written as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

If we know that B has already happened, we can think of B as the new sample space with $n(B)$ elements.
Then the number of ways that A can now occur is $n(A \cap B)$

$$
\Rightarrow \quad P(A \mid B)=\frac{n(A \cap B)}{n(B)}=\frac{\frac{n(A \cap B)}{N}}{\frac{n(B)}{N}}=\frac{P(A \cap B)}{P(B)}
$$

Diagrams for two dice etc.

When considering two dice, two spinners or a coin and a die, the following types of diagram are often useful - they ensure that all outcomes are equally likely to happen.

From these diagrams it should be easy to see that
For two dice: $\quad P($ total 10$)=\frac{3}{36}, \quad P($ red $>$ green $)=\frac{15}{36}, \quad P($ total $10 \mid 4$ on green $)=\frac{\frac{3}{36}}{\frac{6}{36}}=\frac{1}{2}$.
For coin and die: $\quad P($ Head and an even number $)=\frac{3}{12}$.
For three dice: $\quad P($ exactly two Heads $)=\frac{3}{8}$.

Tree diagrams

The rules for tree diagrams are
Select which branches you need

Multiply along each branch

Add the results of each branch needed.
Make sure that you include enough working to show which branches you are using (method).
Be careful to allow for selection with and without replacement.

Example: In the launch of a rocket, the probability of an electrical fault is $0 \cdot 2$. If there is an electrical fault the probability that the rocket crashes is $0 \cdot 4$, and if there is no electrical fault the probability that the rocket crashes is $0 \cdot 3$.

Draw a tree diagram. The rocket takes off, and is seen to crash. What is the probability that there was an electrical fault?

Solution:

We want to find $P(E \mid C)$.
$P(E \mid C)=\frac{P(E \cap C)}{P(C)}$
$P(E \cap C)=0.2 \times 0.4=0.08$
and $P(C)=0.2 \times 0.4+0.8 \times 0.3=0.32$
$\Rightarrow \quad P(E \mid C)=\frac{0.08}{0.32}=0.25$

Independent events

Definition. $\quad A$ and B are independent $\Leftrightarrow P(A \cap B)=P(A) \times P(B)$
It is also true that $P(A \mid B)=P\left(A \mid B^{\prime}\right)=P(A)$.
A and B are not linked, they have no effect on each other.

To prove that A and B are independent

first find $P(A), P(B)$ and $P(A \cap B)$ without assuming that $P(A \cap B)=P(A) \times P(B)$,
second show that $P(A \cap B)=P(A) \times P(B)$.
Note: If A and B are not independent then $P(A \cap B) \neq P(A) \times P(B)$, and must be found in another way, usually considering sample spaces and/or Venn diagrams.

Example: A red die and a green die are rolled and the total score recorded.
A is the event 'total score is 7 ', B is the event 'green score is 6 ' and C is the event 'total score is 10 '.
Show that A and B are independent, but B and C are not independent.
Solution: \quad The events A, B and C are shown on the diagram.

$P(A)=\frac{6}{36}=\frac{1}{6}, P(B)=\frac{6}{36}=\frac{1}{6}$
and $P(A \cap B)=\frac{1}{36} \quad$ from diagram
$P(A) \times P(B)=\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}=P(A \cap B)$
$\Rightarrow \quad A$ and B are independent.
$P(B)=\frac{6}{36}=\frac{1}{6}, P(C)=\frac{3}{36}=\frac{1}{12}$
and $P(B \cap C)=\frac{1}{36}$
from diagram
$P(B) \times P(C)=\frac{1}{6} \times \frac{1}{12}=\frac{1}{72} \neq P(B \cap C)$
$\Rightarrow \quad B$ and C are not independent

Example: $\quad A$ and B are independent events. $P(A)=0.5$ and $P\left(A \cap B^{\prime}\right)=0 \cdot 3$. Find $P(B)$.

Solution: $\quad P(A)=0.5$ and $P\left(A \cap B^{\prime}\right)=0.3$
$\Rightarrow \quad P(A \cap B)=0.5-0.3=0.2$

$$
\begin{array}{ll}
\text { But } & P(A \cap B)=P(A) \times P(B) \\
\Rightarrow & 0.2=0.5 \times P(B) \\
\Rightarrow & P(B)=\frac{0.2}{0.5}=0.4
\end{array}
$$

Exclusive events

Definition. A and B are mutually exclusive

$$
\Leftrightarrow P(A \cap B)=0
$$

i.e. they cannot both occur at the same time

$$
\Rightarrow \quad P(A \cup B)=P(A)+\mathrm{P}(B)
$$

Note: If A and B are not exclusive then $P(A \cup B) \neq P(A)+P(B)$, and must be found in another way, usually considering sample spaces and/or Venn diagrams.

Example: $\quad P(A)=0 \cdot 3, P(B)=0.9$ and $P\left(A^{\prime} \cap B^{\prime}\right)=0 \cdot 1$.
Prove that A and B are mutually exclusive.

Solution: $\quad A^{\prime} \cap B^{\prime}$ is shaded in the diagram

$$
\begin{array}{ll}
\Rightarrow & P\left(A^{\prime} \cap B^{\prime}\right)=1-P(A \cup B) \\
\Rightarrow & P(A \cup B)=1-0 \cdot 1=0 \cdot 9 \\
P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
\Rightarrow & 0.9=0 \cdot 3+0 \cdot 6-P(A \cap B) \\
\Rightarrow & P(A \cap B)=0 \\
\Rightarrow & A \text { and } B \text { are mutually exclusive. }
\end{array}
$$

Number of arrangements

Example: A bag contains 5 Red beads, 7 Yellow beads, and 6 White beads. Three beads are drawn without replacement from the bag. Find the probability that there are 2 Red beads and 1 Yellow bead.

Solution: These beads can be drawn in any order, $R R Y, R Y R, Y R R$

$$
\begin{array}{ll}
\Rightarrow & P(R R Y \text { or } R Y R \text { or } Y R R) \\
= & P(R R Y)+P(R Y R)+P(Y R R) \\
= & \frac{5}{18} \times \frac{4}{17} \times \frac{7}{16}+\frac{5}{18} \times \frac{7}{17} \times \frac{4}{16}+\frac{7}{18} \times \frac{5}{17} \times \frac{4}{16}=\frac{35}{408}=0.0858 \text { to } 3 \text { s.F. }
\end{array}
$$

You must always remember the possibility of more than one order. In rolling four DICE, exactly TWO SIXES can occur in six ways:

SSNN, SNSN, SNNS, NSSN, NSNS, NNSS, each of which would have the same probability $\left(\frac{1}{6}\right)^{2} \times\left(\frac{5}{6}\right)^{2}=\frac{25}{1296}$
and so the probability of exactly two sixes with four dice is $6 \times \frac{25}{1296}=\frac{25}{216}$.

7 Correlation

Scatter diagrams

Positive, negative, no correlation \& line of best fit.

no correlation

positive correlation

negative correlation

The pattern of a scatter diagram shows linear correlation in a general manner.
A line of best fit can be draw by eye, but only when the points nearly lie on a straight line.

Product moment correlation coefficient, PMCC

Formulae

The $S_{* *}$ are all similar to each other and make other formulae simpler to learn and use:

$$
\begin{aligned}
& S_{x y}=\sum\left(x_{i}-\bar{x}\right)(y-\bar{y})=\sum x_{i} y_{i}-\frac{1}{N}\left(\sum x_{i}\right)\left(\sum y_{i}\right) \\
& S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-\frac{1}{N}\left(\sum x_{i}\right)^{2} \\
& S_{y y}=\sum\left(y_{i}-\bar{y}\right)^{2}=\sum y_{i}^{2}-\frac{1}{N}\left(\sum y_{i}\right)^{2}
\end{aligned}
$$

The PMCC $\quad r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}, \quad-1 \leq r \leq+1 \quad$ for proof, see appendix
To calculate the PMCC first calculate $S_{x x}, S_{y y}$ and $S_{x y}$ using the second formula on each line.
N.B. These formulae are all in the formula booklet.

Coding and the PMCC

To see the effect of coding on the PMCC, it is better to use the first formula on each line.
Example: Investigate the effect of the coding $t=\frac{x-k}{a}$ on the PMCC.

Solution: $\quad r_{x y}=\frac{\sum\left(x_{i}-\bar{x}\right)(y-\bar{y})}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}$
$t_{i}=\frac{x_{i}-k}{a} \Rightarrow x_{i}=a t_{i}+k$ and $\bar{x}=a \bar{t}+k$
$\Rightarrow \quad r_{x y}=\frac{\sum\left(a t_{i}+k-(a \bar{t}+k)\right)(y-\bar{y})}{\sqrt{\sum\left(a t_{i}+k-(a \bar{t}+k)\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}$
$=\quad \frac{\sum a\left(t_{i}-\bar{t}\right)(y-\bar{y})}{\sqrt{\sum a^{2}\left(t_{i}-\bar{t}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}$
$=\quad \frac{a \sum\left(t_{i}-\bar{t}\right)(y-\bar{y})}{\sqrt{a^{2}} \sqrt{\sum\left(t_{i}-\bar{t}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}$
$=\quad \frac{\sum\left(t_{i}-\bar{t}\right)(y-\bar{y})}{\sqrt{\sum\left(t_{i}-\bar{t}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}$
$=\quad r_{t y}$
In other words, the coding on x has had no effect on the PMCC. Similarly, coding on y has no effect on the PMCC.
\Rightarrow Coding has no effect on the PMCC.

Interpretation of the PMCC

It can be shown that $-1 \leq r \leq+1$
if $r=+1$ there is perfect positive linear correlation, if $r=-1$ there is perfect negative linear correlation, if $r=0$ (or close to zero) there is no linear correlation .

PMCC tests to see if there is a linear connection between the variables.
For strong correlation, the points on a scatter graph will lie very close to a straight line, and r will be close to 1 or -1 .

Example: Bleep tests are used to measure people's fitness. A higher score means a higher level of fitness. The heart rate, p beats per minute, and bleep score, s, for 12 people were recorded and coded, using $x=p-60$ and $y=10 s-50$.

x	0	-6	9	-1	5	8	30	19	28	20	36	23
y	55	62	38	-7	50	44	8	8	3	20	-14	3

$$
\Sigma x=171, \quad \Sigma y=270, \Sigma x^{2}=4477, \Sigma y^{2}=13540, \quad \Sigma x y=1020 .
$$

(a) Find the PMCC between x and y.
(b) Write down the PMCC between p and s.
(c) Explain why your answer to (b) might suggest that there is a linear relationship between p and s.
(d) Interpret the significance of the PMCC.

Solution: (a) $\quad S_{x y}=\sum x_{i} y_{i}-\frac{1}{N}\left(\sum x_{i}\right)\left(\sum y_{i}\right)=1020-\frac{171 \times 270}{12}=-2827.5$

$$
\begin{aligned}
S_{x x} & =\sum x_{i}{ }^{2}-\frac{1}{N}\left(\sum x_{i}\right)^{2}=4477-\frac{171^{2}}{12}=2040 \cdot 25 \\
S_{y y} & =\sum y^{2}-\frac{1}{N}\left(\sum y_{i}\right)^{2}=13540-\frac{270^{2}}{12}=7465 \\
\Rightarrow \quad r & =\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}=\frac{-2827.5}{\sqrt{2040 \cdot 25 \times 7465}}=-0.7245127195=-0.725 \text { to } 3 \text { s.F. }
\end{aligned}
$$

(b) As coding has no effect on the PMCC, the product moment correlation coefficient for p and s is also -0.725 , to 3 S.F.
(c) $\quad r=-0.725$ is 'quite close' to -1 , and therefore the points on a scatter diagram would lie close to a straight line
$\Rightarrow \quad$ there is evidence of a linear relation between p and s.
(d) There is negative correlation between p and s, which means that as heart rate increases, the bleep score decreases, or people with higher heart rate tend to have lower bleep scores.

8 Regression

Explanatory and response variables

h

d

In an experiment a toy car is released from rest on a ramp from a height of h. The horizontal distance, d, is then measured. The experimenter can control the height, h, and the distance, d, depends on the height chosen.
h is called the explanatory variable and is plotted on the horizontal axis. d is called the response variable and is plotted on the vertical axis.

In some cases it may not be possible to control the explanatory variable. For example the temperature at a given time may affect the sales of ice cream; the researcher cannot control the temperature, but it is the temperature which affects the ice cream sales.
Therefore the temperature is the explanatory variable, and the ice cream sales is the response variable.

Regression line

Least squares regression line

The scatter diagram shows the regression line of y on x. The regression line is drawn to minimise the sum of the squares of the vertical distances between the line and the points.
It can be shown that the regression line has equation $y=a+b x$, where $b=\frac{S_{x y}}{S_{x x}}$,
also that the regression line passes through the 'mean point', (\bar{x}, \bar{y}),
and so we can find a from the equation $\bar{y}=a+b \bar{x} \Rightarrow a=\bar{y}-b \bar{x}$

Interpretation

In the equation $y=a+b x$
a is the value of y when x is zero (or when x is not present)
b is the amount by which y increases for an increase of 1 in x.
You must write your interpretation in the context of the question.

Example: A local authority is investigating the cost of reconditioning its incinerators. Data from 10 randomly chosen incinerators were collected. The variables monitored were the operating time x (in thousands of hours) since last reconditioning and the reconditioning cost y (in $£ 1000$). None of the incinerators had been used for more than 3000 hours since last reconditioning.

The data are summarised below,

$$
\Sigma x=25.0, \Sigma x^{2}=65.68, \Sigma y=50.0, \Sigma y^{2}=260.48, \Sigma x y=130.64
$$

(a) Find the equation of the regression line of y on x.
(b) Give interpretations of a and b.

Solution:

(a) $\bar{x}=\frac{25 \cdot 0}{10}=2 \cdot 50, \quad \bar{y}=\frac{50 \cdot 0}{10}=5 \cdot 00$,

$$
S_{x y}=130.64-\frac{25 \cdot 0 \times 50 \cdot 0}{10}=5 \cdot 64, \quad S_{x x}=65.68-\frac{(25 \cdot 0)^{2}}{10}=3.18
$$

$$
\Rightarrow \quad b=\frac{S_{x y}}{S_{x x}}=\frac{5.64}{3.18}=1.773584906
$$

$\Rightarrow \quad a=\bar{y}-b \bar{x}=5.00-1.773584906 \times 2.50=0.5660377358$
$\Rightarrow \quad$ regression line equation is $y=0.566+1 \cdot 77 x$ to 3 S.F.
(b) $\quad a$ is the cost in $£ 1000$ of reconditioning an incinerator which has not been used, so the cost of reconditioning an incinerator which has not been used is $£ 566$.
(a is the value of y when x is zero)
b is the increase in cost (in £1000) of reconditioning for every extra 1000 hours of use, so it costs an extra $£ 1774$ to recondition an incinerator for every 1000 hours of use. (b is the gradient of the line)

9 Discrete Random Variables

Random Variables

A random variable must take a numerical value:

Examples: the number on a single throw of a die
the height of a person
the number of cars travelling past a fixed point in a certain time
But not the colour of hair as this is not a number

Continuous and discrete random variables

Continuous random variables

A continuous random variable is one which can take any value in a certain interval;
Examples: height, time, weight.

Discrete random variables

A discrete random variable can only take certain values in an interval
Examples: Score on die (1, 2, 3, 4, 5, 6)
Number of coins in pocket ($0,1,2, \ldots$)

Probability distributions

A probability distribution is the set of possible outcomes together with their probabilities, similar to a frequency distribution or frequency table.

Example:

score on two dice, X	2	3	4	5	6	7	8	9	10	11	12
probability, $f(x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

is the probability distribution for the random variable, X, the total score on two dice.
Note that the sum of the probabilities must be 1, i.e. $\sum_{x=2}^{12} P(X=x)=1$.

Cumulative probability distribution

Just like cumulative frequencies, the cumulative probability, F, that the total score on two dice is less than or equal to 4 is $F(4)=P(X \leq 4)=\frac{1}{36}+\frac{2}{36}+\frac{3}{36}=\frac{6}{36}=\frac{1}{6}$.

Note that $F(4.3)$ means $P(X \leq 4.3)$ and seeing as there are no scores between 4 and 4.3 this is the same as $P(X \leq 4)=F(4)$.

Expectation or expected values

Expected mean or expected value of \boldsymbol{X}.

For a discrete probability distribution the expected mean of X, or the expected value of X is

$$
\mu=\mathrm{E}[X]=\sum x_{i} p_{i}
$$

Expected value of a function

The expected value of any function, $f(X)$, is defined as

$$
\mathrm{E}[X]=\sum f\left(x_{i}\right) p_{i}
$$

Note that for any constant, $k, \mathrm{E}[k]=k$, since $\sum k p_{i}=k \sum p_{i}=k \times 1=k$

Expected variance

The expected variance of X is

$$
\begin{aligned}
& \sigma^{2}=\operatorname{Var}[X]=\sum\left(x_{i}-\mu\right)^{2} p_{i}=\sum x_{i}^{2} p_{i}-\mu^{2}, \quad \text { or } \\
& \sigma^{2}=\operatorname{Var}[X]=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left[X^{2}\right]-\mu^{2}=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
\end{aligned}
$$

Expectation algebra

$$
\begin{aligned}
& \mathrm{E}[a X+b]=\sum\left(a x_{i}+b\right) p_{i}=\sum a x_{i} p_{i}+b p_{i}=a \sum x_{i} p_{i}+b \\
&=a \mathrm{E}[X]+b \\
& \begin{aligned}
\operatorname{Var}[a X+b] & =\mathrm{E}\left[(a X+b)^{2}\right]-(\mathrm{E}[(a X+b)])^{2} \\
& \left.=\mathrm{E}\left[\left(a^{2} X^{2}+2 a b X+b^{2}\right)\right]\right)-(a \mathrm{E}[X]+b)^{2} \\
& =\left\{a^{2} \mathrm{E}\left[X^{2}\right]+2 a b \mathrm{E}[X]+\mathrm{E}\left[b^{2}\right]\right\}-\left\{a^{2}(\mathrm{E}[X])^{2}+2 a b \mathrm{E}[X]+b^{2}\right\} \\
& =a^{2} \mathrm{E}\left[X^{2}\right]-a^{2}(\mathrm{E}[X])^{2}=a^{2}\left\{\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}\right\}=a^{2} \operatorname{Var}[X]
\end{aligned}
\end{aligned}
$$

Thus we have two important results:

$$
\begin{aligned}
& \mathrm{E}[a X+b]=a \mathrm{E}[X]+b \\
& \operatorname{Var}[a X+b]=a^{2} \operatorname{Var}[X]
\end{aligned}
$$

which are equivalent to the results for coding done earlier.
Example: A fair die is rolled and the score recorded.
(a) Find the expected mean and variance for the score, X.
(b) A 'prize' is awarded which depends on the score on the die. The value of the prize is $\$ Z=3 X-6$. Find the expected mean and variance of Z.

Solution:

$$
\begin{array}{lcccc}
\text { (a) } & \text { score } & \text { probability } & x_{i} p_{i} & x_{i}^{2} p_{i} \\
& 1 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
& 2 & \frac{1}{6} & \frac{2}{6} & \frac{4}{6} \\
& 3 & \frac{1}{6} & \frac{3}{6} & \frac{9}{6} \\
& 4 & \frac{1}{6} & \frac{4}{6} & \frac{16}{6} \\
& 6 & \frac{1}{6} & \frac{5}{6} & \frac{25}{6} \\
& & \frac{1}{6} & \frac{6}{6} & \frac{36}{6} \\
& & \\
& \mu=\mathrm{E}[X]=\sum x_{i} p_{i}=\frac{21}{6}=3 \frac{1}{2} & \frac{91}{6} \\
\text { and } & \sigma^{2}=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{35}{12}=2 \frac{11}{12}
\end{array}
$$

$\Rightarrow \quad$ The expected mean and variance for the score, X, are $\mu=3 \frac{1}{2}$ and $\quad \sigma^{2}=2 \frac{11}{12}$
(b) $\quad Z=3 X-6$
$\Rightarrow \quad \mathrm{E}[Z]=\mathrm{E}[3 X-6]=3 \mathrm{E}[X]-6=10 \frac{1}{2}-6=4 \frac{1}{2}$
and $\operatorname{Var}[Z]=\operatorname{Var}[3 X-6]=3^{2} \operatorname{Var}[X]=9 \times \frac{35}{12}=26 \frac{1}{4}$
$\Rightarrow \quad$ The expected mean and variance for the prize, $\$ Z$, are $\mu=4 \frac{1}{2}$ and $\sigma^{2}=26 \frac{1}{4}$

The discrete uniform distribution

Conditions for a discrete uniform distribution

- The discrete random variable X is defined over a set of n distinct values
- Each value is equally likely, with probability $1 / n$.

Example: The random variable X is defined as the score on a single die. X is a discrete uniform distribution on the set $\{1,2,3,4,5,6\}$

The probability distribution is

Score	1	2	3	4	5	6
Probability	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Expected mean and variance

For a discrete uniform random variable, X defined on the set $\{1,2,3,4, \ldots, n\}$,

X	1	2	3	4	\cdots	\cdots	n
Probability	$\frac{1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$			$\frac{1}{n}$

By symmetry we can see that the Expected mean $=\mu=\mathrm{E}[X]=\frac{1}{2}(n+1)$,

$$
\text { or } \begin{aligned}
\mu & =\mathrm{E}[X]=\sum x_{i} p_{i}=1 \times \frac{1}{n}+2 \times \frac{1}{n}+3 \times \frac{1}{n}+\ldots+n \times \frac{1}{n} \\
& =(1+2+3+\ldots+n) \times \frac{1}{n}=\frac{1}{2} n(n+1) \times \frac{1}{n}=\frac{1}{2}(n+1)
\end{aligned}
$$

The expected variance,

$$
\begin{aligned}
\operatorname{Var}[X] & =\sigma^{2}=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\sum x_{i}^{2} p_{i}-\mu^{2} \\
& =\left(1^{2}+2^{2}+3^{2}+\ldots+n^{2}\right) \times \frac{1}{n}-\left(\frac{1}{2}(n+1)\right)^{2} \\
& =\frac{1}{6} n(n+1)(2 n+1) \times \frac{1}{n}-\frac{1}{4}(n+1)^{2} \quad \text { since } \sum i^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& =\frac{1}{24}(n+1)\{(8 n+4)-(6 n+6)\} \\
& =\frac{1}{24}(n+1)(2 n-2) \\
\Rightarrow \quad & \operatorname{Var}[X]=\sigma^{2}=\frac{1}{12}\left(n^{2}-1\right)
\end{aligned}
$$

These formulae can be quoted in an exam (if you learn them!).

Non-standard uniform distribution

The formulae can sometimes be used for non-standard uniform distributions.
Example: X is the score on a fair 10 sided spinner. Define $Y=5 X+3$.
Find the mean and variance of Y.
Y is the distribution $\{8,13,18, \ldots 53\}$, all with the same probability $\frac{1}{10}$.
Solution: $\quad X$ is a discrete uniform distribution on the set $\{1,2,3, \ldots, 10\}$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{E}[X]=\frac{1}{2}(n+1)=5 \frac{1}{2} \\
\text { and } & \operatorname{Var}[X]=\frac{1}{12}\left(n^{2}-1\right)=\frac{99}{12}=8 \frac{1}{4} \\
\Rightarrow & \mathrm{E}[Y]=\mathrm{E}[5 X+3]=5 \mathrm{E}[X]+3=30 \frac{1}{2} \\
\text { and } & \operatorname{Var}[X]=\operatorname{Var}[5 X+3]=5^{2} \operatorname{Var}[X]=25 \times \frac{99}{12}=206 \frac{1}{4} \\
\Rightarrow & \text { mean and variance of } Y \text { are } 27 \frac{1}{2} \text { and } 206 \frac{1}{4} .
\end{array}
$$

10 The Normal Distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$

The standard normal distribution $\mathbf{N}\left(0, \mathbf{1}^{2}\right)$

The diagram shows the standard normal distribution

Mean, μ, $=0$
Standard deviation, σ, $=1$

The tables give the area, $\Phi(z)$, from $-\infty$ upto z;

To find other probabilities, sketch the curve and use your head

Example: $\quad P(Z<-1 \cdot 23)$

$$
\begin{aligned}
& =\text { area upto }-1.23=\Phi(-1.23) \\
& =\text { area beyond }+1.23=1-\Phi(+1.23) \\
& =1-0.8907=0.1093 \text { to } 4 \text { D.P. }
\end{aligned}
$$

The general normal distribution $\mathbf{N}\left(\mu, \sigma^{2}\right)$

Use of tables

To use the tables for a Normal distribution with
mean μ and standard deviation σ

We use $Z=\frac{X-\mu}{\sigma}$ (see appendix) and look in the tables under this value of Z

Z

Example: The length of life (in months) of Blowdri's hair driers is approximately Normally distributed with mean 90 months and standard deviation 15 months.
(a) Each drier is sold with a 5 year guarantee. What proportion of driers fail before the guarantee expires?
(b) The manufacturer decides to change the length of the guarantee so that no more than 1% of driers fail during the guarantee period. How long should he make the guarantee?

Solution:

(a) X is the length of life of drier $\Rightarrow X \sim \mathrm{~N}\left(90,15^{2}\right)$. 5 years $=60$ months
\Rightarrow we want $P(X<60)=$ area upto 60
$\Rightarrow Z=\frac{X-\mu}{\sigma}=\frac{60-90}{15}=-2.0$
so we want area to left of $Z=-2$
$=\Phi(-2)=1-\Phi(2)$
$=1-0.9772=0.0228$ to 4 D.P. from tables.

\Rightarrow the proportion of hair driers failing during the guarantee period is 0.0288 to 4 D.P.
(b) Let the length of the guarantee be t years
\Rightarrow we need $\mathrm{P}(X<t)=0.01$.

We need the value of Z such that $\Phi(Z)=0.01$
From the tables $Z=-2 \cdot 3263$ to 4 D.P. from tables (remember to look in the small table after the Normal tables)

Standardising the variable

$$
\begin{aligned}
& \Rightarrow \quad Z=\frac{X-\mu}{\sigma}=\frac{t-90}{15} \\
& \Rightarrow \quad \frac{t-90}{15}=-2 \cdot 3263 \text { to } 4 \text { D.P. from tables } \\
& \Rightarrow \quad t=55.1 \text { to } 3 \text { S.F. }
\end{aligned}
$$

so the manufacturer should give a guarantee period of 55 months (4 years 7 months)
Example: The results of an examination were Normally distributed. 10\% of the candidates had more than 70 marks and 20% had fewer than 35 marks.

Find the mean and standard deviation of the marks.

Solution:

First we need the values from the tables

$$
\begin{aligned}
& \Rightarrow \quad \Phi(-0.8416)=0.2, \\
& \text { and } 1-\Phi(1.2816)=0.1
\end{aligned}
$$

Using $Z=\frac{X-\mu}{\sigma}$ we have
$-0.8416=\frac{35-\mu}{\sigma}$
$\Rightarrow \mu=35+0.8416 \sigma$
and $1.2816=\frac{70-\mu}{\sigma}$
$\Rightarrow \mu=70-1 \cdot 2816 \sigma$
$\Rightarrow \sigma=16.5$ and $\mu=48.9$ to 3 s.F.

simultaneous equations

Example: The weights of chocolate bars are normally distributed with mean 205 g and standard deviation 2.6 g . The stated weight of each bar is 200 g .
(a) Find the probability that a single bar is underweight.
(b) Four bars are chosen at random. Find the probability that fewer than two bars are underweight.

Solution:

(a) Let W be the weight of a chocolate bar, $W \sim \mathrm{~N}\left(205,2 \cdot 6^{2}\right)$.
$Z=\frac{W-\mu}{\sigma}=\frac{200-205}{2.6}=-1.9230769 \ldots$
$\mathrm{P}(W<200)=\mathrm{P}(Z<-1.92)=1-\Phi(1.92)=1-0.9726$
\Rightarrow probability of an underweight bar is 0.0274 .
(b) We want the probability that 0 or 1 bars chosen from 4 are underweight.

Let U be underweight and C be correct weight.
$\mathrm{P}(1$ underweight $)=\mathrm{P}(C C C U)+\mathrm{P}(C C U C)+\mathrm{P}($ CUCC $)+\mathrm{P}($ UCCC $)$
$=4 \times 0.0274 \times 0.9726^{3}=0.1008354753$
$P(0$ underweight $)=0.9276^{4}=0.7403600224$
\Rightarrow the probability that fewer than two bars are underweight $=0.841$ to 3 s.F.

11 Context questions and answers

Accuracy

You are required to give your answers to an appropriate degree of accuracy.
There is no hard and fast rule for this, but the following guidelines should never let you down.

1. If stated in the question give the required degree of accuracy.
2. When using a calculator, give 3 s.f.
unless finding $S_{x x}, S_{x y}$ etc. in which case you can give more figures - you should use all figures when finding the PMCC or the regression line coefficients.
3. Sometimes it is appropriate to give a mean to 1 or 2 D.P. rather than 3 s.F.
4. When using the tables and doing simple calculations (which do not need a calculator), you should give 4 D.P.

Statistical models

Question 1

(a) Explain briefly what you understand by
(i) a statistical experiment,
(ii) an event.
(b) State one advantage and one disadvantage of a statistical model.

Answer
(a) a test/investigation/process for collecting data to provide evidence to test a hypothesis.

A subset of possible outcomes of an experiment
(b) Quick, cheap can vary the parameters and predict

Does not replicate real world situation in every detail.

Question 2

Statistical models can be used to describe real world problems. Explain the process involved in the formulation of a statistical model.

Answer
Observe real world problem
Devise a statistical model and collect data
Compare observed against expected outcomes and test the model
Refine model if necessary

Question 3

(a) Write down two reasons for using statistical models.
(b) Give an example of a random variable that could be modelled by
(i) a normal distribution,
(ii) a discrete uniform distribution.

Answer
(a) To simplify a real world problem

To improve understanding / describe / analyse a real world problem
Quicker and cheaper than using real thing
To predict possible future outcomes
Refine model / change parameters possible
Any 2
(b) (i) height, weight, etc.
(ii) score on a face after rolling a fair die

Histograms

Question 1

Give a reason to justify the use of a histogram to represent these data.
Answer
The variable (minutes delayed) is continuous.

Averages

Question 1
Write down which of these averages, mean or median, you would recommend the company to use. Give a reason for your answer.
Answer

The median, because the data is skewed.

Question 2

State whether the newsagent should use the median and the inter-quartile range or the mean and the standard deviation to compare daily sales. Give a reason for your answer.

Answer
Median \& IQR as the data is likely to be skewed

Question 3

Compare and contrast the attendance of these 2 groups of students.
Answer
Median $2^{\text {nd }}$ group $<$ Median $1^{\text {st }}$ group;
Mode $1^{\text {st }}$ group > Mode $2^{\text {nd }}$ group;
$2^{\text {nd }}$ group had larger spread/IQR than $1^{\text {st }}$ group
Only 1 student attends all classes in $2^{\text {nd }}$ group

Question 4

Compare and contrast these two box plots.
Answer
Median of Northcliffe is greater than median of Seaview.
Upper quartiles are the same
IQR of Northcliffe is less than IQR of Seaview
Northcliffe positive skew, Seaview negative skew
Northcliffe symmetrical, Seaview positive skew (quartiles)
Range of Seaview greater than range of Northcliffe
any 3 acceptable comments

Skewness

Question 1

Comment on the skewness of the distribution of bags of crisps sold per day. Justify your answer.
Answer
$Q_{2}-Q_{1}=7 ; Q_{3}-Q_{2}=11 ; Q_{3}-Q_{2}>Q_{2}-Q_{1}$ so positive skew.

Question 2

Give two other reasons why these data are negatively skewed.
Answer
For negative skew; Mean < median < mode: $49 \cdot 4<52<56$
$Q_{3}-Q_{2}<Q_{2}-Q_{1}: \quad 8<17$

Question 3

Describe the skewness of the distribution. Give a reason for your answer.

Answer
No skew or slight negative skew.
$0.22=Q_{3}-Q_{2} \approx Q_{2}-Q_{1}=0.23$ or $0.22=Q_{3}-Q_{2}<Q_{2}-Q_{1}=0.23$
or mean (3.23) \approx median (3.25), or mean (3.23) $<$ median (3.25)

Correlation

Question 1
Give an interpretation of your PMCC ($-0 \cdot 976$)
Answer
As height increases, temperature decreases (must be in context).

Question 2

Give an interpretation of this value, $\mathrm{PMCC}=-0.862$.
Answer
As sales at one petrol station increases, sales at the other decrease (must be in context).

Question 3

Give an interpretation of your correlation coefficient, 0.874.
Answer
Taller people tend to be more confident (must be in context).

Question 4

Comment on the assumption that height and weight are independent.

Answer

Evidence (in question) suggests height and weight are positively correlated / linked, therefore the assumption of independence is not sensible (must be in context).

Regression

Question 1

Suggest why the authority might be cautious about making a prediction of the reconditioning cost of an incinerator which had been operating for 4500 hours since its last reconditioning.
Answer $\quad 4500$ is well outside the range of observed values, and there is no evidence that the model will apply.

Question 2

Give an interpretation of the slope, 0.9368 , and the intercept, 19 , of your regression line.

Answer

The slope, b - for every extra hour of practice on average 0.9368 fewer errors will be made

The intercept, a - without practice 19 errors will be made.

Question 3

Interpret the value of b (coefficient of x in regression line).
Answer
3 extra ice-creams are sold for every $1^{\circ} \mathrm{C}$ increase in temperature

Question 4

At 1 p.m. on a particular day, the highest temperature for 50 years was recorded. Give a reason why you should not use the regression equation to predict ice cream sales on that day.

Answer

Temperature is likely to be outside range of observed values.

Question 5
Interpret the value of a, (regression line)
Answer
Number of \qquad sold if no money spent on advertising

Question 6

Give a reason to support fitting a regression model of the form $y=a+b x$ to these data.
Answer
Points on the scatter graph lie close to a straight line.

Question 7

Give an interpretation of the value of b.
Answer
A flight costs $£ 2.03$ (or about $£ 2$) for every extra $\mathbf{1 0 0 k m}$ or about $\mathbf{2 p}$ per extra $\mathbf{k m}$.

Discrete uniform distribution

Question 1
A discrete random variable is such that each of its values is assumed to be equally likely.
(a) Write down the name of the distribution that could be used to model this random variable.
(b) Give an example of such a distribution.
(c) Comment on the assumption that each value is equally likely.
(d) Suggest how you might refine the model in part (a).

Answer
(a) Discrete uniform
(b) Example - Tossing a fair die /coin, drawing a card from a pack
(c) Useful in theory - allows problems to be modelled, but the assumption might not be true in practice
(d) Carry out an experiment to find the probabilities - which might not fit the model.

Normal distribution

Question 1

The random variable X is normally distributed with mean $177 \cdot 0$ and standard deviation 6.4.

It is suggested that X might be a suitable random variable to model the height, in cm, of adult males.
(a) Give two reasons why this is a sensible suggestion.
(b) Explain briefly why mathematical models can help to improve our understanding of realworld problems.
Answer
(a) Male heights cluster round a central height of approx $177 / 178 \mathrm{~cm}$

Height is a continuous random variable.
Most male heights lie within $177 \pm 3 \times 6.4$
(b) Simplifies real world problems

Enable us to gain some understanding of real world problems more quickly/cheaply.

Question 2

Explain why the normal distribution may not be suitable to model the number of minutes that motorists are delayed by these roadworks.
Answer For this data skewness is 3.9, whereas a normal distribution is symmetrical and has no skew.

Question 3

Describe two features of the Normal distribution
Answer
Bell shaped curve; symmetrical about the mean; 95% of data lies within 2 s.d. of mean; etc. (any 2).

Question 4

Give a reason to support the use of a normal distribution in this case.
Answer
Since mean and median are similar (or equal or very close), the distribution is (nearly) symmetrical and a normal distribution may be suitable.
Allow mean or median close to mode/modal class \Rightarrow), the distribution is (nearly) symmetrical and a normal distribution may be suitable.

12 Appendix

-1 \leq P.M.C.C. ≤ 1

Cauchy-Schwartz inequality

Consider $\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}\right)^{2}$

$$
\begin{aligned}
& =\quad a_{1}^{2} b_{1}^{2}+a_{1}^{2} b_{2}^{2}+a_{2}^{2} b_{1}^{2}+a_{2}^{2} b_{2}^{2}-a_{1}^{2} b_{1}^{2}-2 a_{1} b_{1} a_{2} b_{2}-a_{2}^{2} b_{2}^{2} \\
& =a_{1}^{2} b_{2}^{2}-2 a_{1} b_{1} a_{2} b_{2}+a_{2}^{2} b_{1}^{2} \\
& =\quad\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \geq 0 \\
\Rightarrow & \left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}\right)^{2} \geq 0 \\
\Rightarrow & \left(a_{1} b_{1}+a_{2} b_{2}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}\right)
\end{aligned}
$$

This proof can be generalised to show that

$$
\begin{aligned}
& \left(a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}\right) \\
\text { or } \quad & \left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)
\end{aligned}
$$

P.M.C.C. between $\mathbf{- 1}$ and +1

In the above proof, take $a_{i}=\left(x_{i}-\bar{x}\right)$, and $b_{i}=\left(y_{i}-\bar{y}\right)$

$$
\begin{aligned}
\Rightarrow \quad S_{x y} & =\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum a_{i} b_{i} \\
S_{x x} & =\sum\left(x_{i}-\bar{x}\right)^{2}=\sum a_{i}^{2} \quad \text { and } \quad S_{y y}=\sum\left(y_{i}-\bar{y}\right)^{2}=\sum b_{i}^{2}
\end{aligned}
$$

P.M.C.C. $=r=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}$
$\Rightarrow r^{2}=\frac{S_{x y}{ }^{2}}{S_{x x} S_{y y}}=\frac{\left(\sum a_{i} b_{i}\right)^{2}}{\left(\sum a_{i}{ }^{2}\right)\left(\sum b_{i}{ }^{2}\right)} \leq 1 \quad$ using the Cauchy-Schwartz inequality

Regression line and coding

The regression line of y on x has equation $y=a+b x$, where $b=\frac{s_{x y}}{s_{x x}}$, and $a=\bar{y}-b \bar{x}$.
Using the coding $x=h X+m, y=g Y+n$, the regression line for Y on X is found by writing $g Y+n$ instead of y, and $h X+m$ instead of x in the equation of the regression line of y on x, $\Rightarrow g Y+n=a+b(h X+m)$
$\Leftrightarrow Y=\frac{a+b m-n}{g}+\frac{h}{g} b X \quad \ldots \quad \ldots \quad \ldots \quad \quad$ equation \mathbf{I}.

Proof

$$
\begin{aligned}
& \bar{x}=h \bar{X}+m, \text { and } \bar{y}=g \bar{Y}+n \\
& \Rightarrow \quad(x-\bar{x})=(h X+m)-(h \bar{X}+m)=(h X-h \bar{X}), \quad \text { and similarly }(y-\bar{y})=(g Y-g \bar{Y}) .
\end{aligned}
$$

Let the regression line of y on x be $y=a+b x$, and let the regression line of Y on X be $Y=\alpha+\beta X$.

Then $b=\frac{S_{x y}}{S_{x x}}$ and $a=\bar{y}-b \bar{x}$ also $\beta=\frac{S_{X Y}}{S_{X X}}$ and $\alpha=\bar{Y}-\beta \bar{X}$.

$$
\begin{aligned}
& b=\frac{S_{x y}}{S_{x x}}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}=\frac{\sum(h X-h \bar{X})(g Y-g \bar{Y})}{\sum(h X-h \bar{X})^{2}}=\frac{h g \sum(X-\bar{X})(Y-\bar{Y})}{h^{2} \sum(X-\bar{X})^{2}}=\frac{g \sum(X-\bar{X})(Y-\bar{Y})}{h \sum(X-\bar{X})^{2}} \\
& \Rightarrow \quad b=\frac{g}{h} \beta \\
& \Rightarrow \quad \beta=\frac{h b}{g} \\
& \alpha=\bar{Y}-\beta \bar{X}=\frac{\bar{y}-n}{g}-\frac{h b}{g}\left(\frac{\bar{x}-m}{h}\right)=\frac{\bar{y}-b \bar{x}+b m-n}{g}=\frac{a+b m-n}{g} \quad \text { since } a=\bar{y}-b \bar{x}
\end{aligned}
$$

and so

$$
Y=\alpha+\beta X \Leftrightarrow Y=\frac{a+b m-n}{g}+\frac{h}{g} b X
$$

which is the same as equation \mathbf{I}.

Normal Distribution, $Z=\frac{X-\mu}{\sigma}$

The standard normal distribution with mean 0 and standard deviation 1 has equation

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}}
$$

The normal distribution tables allow us to find the area between Z_{1} and Z_{2}.

$$
=\int_{Z_{1}}^{Z_{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z
$$

The normal distribution with mean μ and standard deviation σ has equation

$$
\begin{gathered}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \\
P\left(X_{1} \leq X \leq X_{2}\right)=\int_{X_{1}}^{X_{2}} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x
\end{gathered}
$$

Using the substitution $\quad z=\frac{x-\mu}{\sigma}$

$$
\begin{aligned}
& d z=\frac{1}{\sigma} d x, \quad Z_{1}=\frac{X_{1}-\mu}{\sigma} \text { and } Z_{2}=\frac{X_{2}-\mu}{\sigma} \\
& \Rightarrow P\left(X_{1} \leq X \leq X_{2}\right)=\int_{Z_{1}}^{Z_{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} d z
\end{aligned}
$$

$=$ the area under the standard normal curve, which we can find from the tables using
$Z_{1}=\frac{X_{1}-\mu}{\sigma}$ and $Z_{2}=\frac{X_{2}-\mu}{\sigma}$.
Thus $P\left(X_{1} \leq X \leq X_{2}\right)=P\left(Z_{1} \leq Z \leq Z_{2}\right)=\Phi\left(Z_{2}\right)-\Phi\left(Z_{1}\right)$

Index

accuracy, 41
box plots, 16
class boundaries, 7
correlation, 27
context questions, 44
cumulative frequency, 6 cumulative frequency curves, 8
cumulative probability distribution, 33
discrete uniform distribution, 35
context questions, 46
expected mean, 35
expected variance, 35
exclusive events, 26
expectation. See expected values
expectation algebra, 33
expected values, 33
expected mean, 33
expected variance, 33
frequency distributions, 6
grouped frequency distributions, 7
histograms, 8
context questions, 42
independent events, 25
interquartile range, 13, 19
mean, 10
coding, 11
when to use, 12
median
discrete lists and tables, 13
grouped frequency tables, 14
when to use, 12
mode, 10
when to use, 12
normal distribution, 37
context questions, 46
general normal distribution, 37
standard normal distribution, 37
standardising the variable, proof, 50
outliers, 16
percentiles, 16
probability
diagrams for two dice etc, 23
number of arrangements, 26
rules, 22
Venn diagrams, 22
probability distributions, 32
product moment correlation coefficient, 27
between -1 and +1 , 48
coding, 28
interpretation, 28
quartiles
discrete lists and tables, 13
grouped frequency tables, 14
random variables, 32
continuous, 32
discrete, 32
range, 19
regression, 30
context questions, 45
explanatory variable, 30
response variable, 30
regression line, 30
interpretation, 31
regression line and coding proof, 49
relative frequency, 22
sample spaces, 22
scatter diagrams, 27
line of best fit, 27
skewness, 17
context questions, 43
standard deviation, 19
statistical modelling, 5
statistical models
context questions, 41
stem and leaf diagrams, 7
tree diagrams, 24
variables
continuous variables, 6
discrete variables, 6
qualitative variables, 6
quantitative variables, 6
variance, 19
coding, 20

