

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4721

Core Mathematics 1

Monday

10 JANUARY 2005

Afternoon

1 hour 30 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are not permitted to use a calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

WARNING

You are not allowed to use a calculator in this paper.

This question paper consists of 3 printed pages and 1 blank page.

Registered Charity Number: 1066969

[Turn over

- 1 (i) Express 11^{-2} as a fraction. [1]
 - (ii) Evaluate $100^{\frac{3}{2}}$. [2]
 - (iii) Express $\sqrt{50} + \frac{6}{\sqrt{3}}$ in the form $a\sqrt{2} + b\sqrt{3}$, where a and b are integers. [3]
- 2 Given that $2x^2 12x + p = q(x r)^2 + 10$ for all values of x, find the constants p, q and r. [4]
- 3 (i) The curve $y = 5\sqrt{x}$ is transformed by a stretch, scale factor $\frac{1}{2}$, parallel to the x-axis. Find the equation of the curve after it has been transformed. [2]
 - (ii) Describe the single transformation which transforms the curve $y = 5\sqrt{x}$ to the curve $y = (5\sqrt{x}) 3$.
- 4 Solve the simultaneous equations

$$x^2 - 3y + 11 = 0,$$
 $2x - y + 1 = 0.$ [5]

5 On separate diagrams,

(i) sketch the curve
$$y = \frac{1}{x}$$
, [2]

- (ii) sketch the curve $y = x(x^2 1)$, stating the coordinates of the points where it crosses the x-axis, [3]
- (iii) sketch the curve $y = -\sqrt{x}$. [2]
- 6 (i) Calculate the discriminant of $-2x^2 + 7x + 3$ and hence state the number of real roots of the equation $-2x^2 + 7x + 3 = 0$. [3]
 - (ii) The quadratic equation $2x^2 + (p+1)x + 8 = 0$ has equal roots. Find the possible values of p. [4]
- 7 Find $\frac{dy}{dx}$ in each of the following cases:

(i)
$$y = \frac{1}{2}x^4 - 3x$$
, [2]

(ii)
$$y = (2x^2 + 3)(x + 1)$$
, [4]

(iii)
$$y = \sqrt[5]{x}$$
. [3]

- 8 The length of a rectangular children's playground is $10 \,\mathrm{m}$ more than its width. The width of the playground is x metres.
 - (i) The perimeter of the playground is greater than 64 m. Write down a linear inequality in x. [1]
 - (ii) The area of the playground is less than 299 m². Show that (x-13)(x+23) < 0. [2]
 - (iii) By solving the inequalities in parts (i) and (ii), determine the set of possible values of x. [5]
- 9 (i) Find the gradient of the curve $y = 2x^2$ at the point where x = 3. [2]
 - (ii) At a point A on the curve $y = 2x^2$, the gradient of the normal is $\frac{1}{8}$. Find the coordinates of A. [3]

Points $P_1(1, y_1)$, $P_2(1.01, y_2)$ and $P_3(1.1, y_3)$ lie on the curve $y = kx^2$. The gradient of the chord P_1P_3 is 6.3 and the gradient of the chord P_1P_2 is 6.03.

- (iii) What do these results suggest about the gradient of the tangent to the curve $y = kx^2$ at P_1 ? [1]
- (iv) Deduce the value of k. [3]
- 10 The points D, E and F have coordinates (-2, 0), (0, -1) and (2, 3) respectively.
 - (i) Calculate the gradient of DE. [1]
 - (ii) Find the equation of the line through F, parallel to DE, giving your answer in the form ax + by + c = 0.
 - (iii) By calculating the gradient of EF, show that DEF is a right-angled triangle. [2]
 - (iv) Calculate the length of DF. [2]
 - (v) Use the results of parts (iii) and (iv) to show that the circle which passes through D, E and F has equation $x^2 + y^2 3y 4 = 0$. [5]

BLANK PAGE